Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2693563.v1

ABSTRACT

The mechanism of syncytium formation, caused by spike-induced cell-cell fusion in severe COVID-19, is largely unclear. Here we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical host factor exploited by SARS-CoV-2 to enhance spike’s fusogenic activity. HS binds spike to facilitate ACE2 clustering, generating synapse-like cell-cell contacts to promote fusion pore formation. ACE2 clustering, and thus, syncytium formation is significantly mitigated by chemical or genetic elimination of cell surface HS, while in a cell-free system consisting of purified HS, spike, and lipid-anchored ACE2, HS directly induces ACE2 clustering. Importantly, the interaction of HS with spike allosterically enables a conserved ACE2 linker in receptor clustering, which concentrates spike at the fusion site to overcome fusion-associated activity loss. This fusion-boosting mechanism can be effectively targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice.


Subject(s)
COVID-19 , Virus Diseases
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.08.471787

ABSTRACT

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time-consuming and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ~2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.15.464595

ABSTRACT

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a spike-GAG complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar GAG-binding activities but with reduced affinity for DNA topoisomerase may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.


Subject(s)
COVID-19 , Breakthrough Pain
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.14.202549

ABSTRACT

Drugs capable of blocking the infectious cycle of the coronavirus SARS-CoV-2 are urgently needed to tackle the ongoing COVID-19 pandemic. To this end, the cell entry of SARS-CoV-2, initiated by the binding of the viral Spike (S) protein to human ACE2, has emerged as an attractive drug repurposing target. Here we use murine leukemia viruses pseudotyped with Spike from SARS-CoV or SARS-CoV-2 to demonstrate that ACE2-mediated coronavirus entry can be mitigated by heparin, a heparan sulfate-related glycan, or by genetic ablation of biosynthetic enzymes for the cell surface heparan sulfate proteoglycans (HSPGs). A drug repurposing screen targeting HSPG-dependent endocytosis identifies pharmacologically active endocytosis inhibitors that also abrogate coronavirus cell entry. Among them, Mitoxantrone (EC50=~10 nM) targets HSPGs directly, whereas Sunitinib and BNTX disrupt the actin network to impair HSPG-assisted viral entry. Gene expression profiling suggests potential combination regimens that optimally target HSPG-dependent viral entry. Altogether, our study establishes HSPGs as an assisting factor for ACE2 in endocytosis-mediated coronavirus entry and identifies drugs that can be repurposed to target this important stage in the viral life cycle.


Subject(s)
Leukemia , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL